PREDIKSI PENYAKIT JANTUNG MENGGUNAKAN SUPPORT VECTOR MACHINE DAN PYTHON PADA BASIS DATA PASIEN DI CLEVELAND
Abstract
Support Vector Machine (SVM) digunakan dalam penelitian ini untuk memprediksi penyakit jantung berdasarkan 13 kondisi medis pasien. Kondisi medis ini digunakan sebagai atribut predikator dalam penelitian ini. Keluaran yang ingin diprediksi berupa kelas target bernilai 1 jika pasien penyakit jantung dan 0 jika pasien bukan penyakit jantung. Pelatihan dilakukan dengan Python dan pustaka scikit. SVM diuji menggunakan empat macam kernel yaitu linear, RBF, polynomial dan sigmod. Dari hasil pelatihan model dengan nilai metrik terbaik didapatkan jika menggunakan kernel linear. Nilai metrik akurasi sama dengan 90.11%, presisi 90.38% dan recall 92.15% dengan kernel linear
References
Awad, Mariette & Khanna, Rahul. (2015). Support Vector Machines for Classification. 10.1007/978-1-4302-5990-9_3.
Chauhan, Raj H., Daksh N. Naik., Rinal A. Halpati., Sagarkumar J. Patel. & Mr. A.D.Prajapati. (2020). Disease Prediction using Machine Learning. International Research Journal of Engineering and Technology (IRJET) Volume: 07 Issue: 05 | May 2020.
Farooqui, Md. Ehtisham and Ahmad, Dr. Jameel, Disease Prediction System using Support Vector Machine and Multilinear Regression (August 13, 2020). International Journal of Innovative Research in Computer Science & Technology (IJIRCST) ISSN: 2347-5552, Volume, 8, Issue, 4, July, 2020.
Grace, S.L., Rick Fry , Angela Cheung & Donna E Stewart. (2004). Cardiovascular Disease. BMC Women's Health 4,S15. https://doi.org/10.1186/1472-6874-4-S1-S15.
Han, Jiawei. dan Michael Kamber. (2006). Data Mining Concept and Techniques, 2nd edition, USA: Elsevier, Inc, 2006.
Kramar, Vadym & Alchakov, Vasiliy & Dushko, Veronika & Kramar, Tatiana. (2018). Application of support vector machine for prediction and classification. Journal of Physics: Conference Series. 1015. 032070. 10.1088/1742-6596/1015/3/032070.
Pahwa, Kanika & Ravinder Kumar dkk. (2017). Prediction of Heart Disease Using Hybrid Technique For Selecting Features, 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (UPCON).
Pouriyeh, Seyedamin., Sara Vahid., Giovanna Sannino., Giuseppe De Pietro., Hamid Arabnia., Juan Gutierrez. (2017). A Comprehensive Investigation and Comparison of Machine Learning Techniques in the Domain of Heart Disease. 22nd IEEE Symposium on Computers and Communication (ISCC 2017): Workshops - ICTS4eHealth 2017.
Powers, David & Ailab,. (2011). Evaluation: From precision, recall and F-measure to ROC, informedness, markedness & correlation. J. Mach. Learn. Technol. 2. 2229-3981. 10.9735/2229-3981.
Rufai, Ahmad., U. S. Idriss & Mahmood Umar. (2018). Using Artificial Neural Networks to Diagnose Heart Disease. International Journal of Computer Applications. 182. 1-6. 10.5120/ijca2018917938.
Thirugnanam, Mythili. (2013). A Heart Disease Prediction Model using SVM-Decision Trees-Logistic Regression (SDL). International Journal of Computer Applications in Technology. 68. 11-15. 10.5120/11662-7250.
V.V. Ramalingam, Ayantan Dandapath, M Karthik Raja. (2018). Heart disease prediction using machine learning techniques: a survey. International Journal of Engineering & Technology, 7 (2.8) (2018) 684-687
WHO. (2011). Global Atlas on Cardiovascular Disease Prevention and Control. World Health Organization; 2011.
Yihua, Zhong., Zhao Lei, Liu Zhibin, Xu Yao & Li Rong. (2010). Using a support vector machine method to predict the development indices of very high water cut oilfi elds. Petroleum Science, 2010 – Springer.
Copyright (c) 2021 Dwi Sidik Permana, Astried Silvanie
This work is licensed under a Creative Commons Attribution 4.0 International License.